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Abstract. We present magnetic properties of the three-band Hubbard model in the para- and antiferro-
magnetic phase on a hypercubic lattice calculated with the Dynamical Mean-Field Theory (DMFT). To
allow for solutions with broken spin-symmetry we extended the approach to lattices with AB-like structure.
Above a critical sublattice magnetization md ≈ 0.5 one can observe rich structures in the spectral-functions
similar to the t−J model which can be related to the well known bound states for one hole in the Neél-
background. In addition to the one-particle properties we discuss the static spin-susceptibility in the para-
magnetic state at the points q = 0 and q = (π, π, π, · · · ) for different dopings δ. The δ-T -phase-diagram
exhibits an enhanced stability of the antiferromagnetic state for electron-doped systems in comparison to
hole-doped. This asymmetry in the phase diagram is in qualitative agreement with experiments for high-Tc
materials.

PACS. 71.27.+a Strongly correlated electron systems – 71.30.+h Metal-insulator transitions
and other electronic transitions – 75.10.-b General theory and models of magnetic ordering

1 Introduction and model

One of the few undisputed facts about high-Tc materi-
als is that all undoped high-Tc compounds are insulators
with antiferromagnetic ordering in the CuO2-planes at low
enough temperatures [1]. Doping of the systems leads to
a strong suppression of the antiferromagnetic order and
eventually superconductivity sets in. While the explana-
tion of this transition and the proximity of antiferromag-
netism and superconductivity surely is the most fascinat-
ing aspect in the high-Tc compounds, there are a variety
of other peculiarities that call for an explanation. One of
these side aspects is the observation that, although the
basic scenario is the same, hole and electron doped mate-
rials show an apparent qualitative difference in that the
magnetic phase in the latter appears to be much more
stable for the latter (cf. Fig. 1).

The physics in the insulating phase is well-described
by a Heisenberg model since charge fluctuations are
suppressed by strong local correlations and, to a first
approximation, one is left with the Cu-spin degrees of
freedom only. The exchange parameter of the resulting
effective Heisenberg model is obtained from standard su-
perexchange processes [2,3], induced by virtual hopping
of a hole from one Cu-ion to the neighbouring one over a
nonmagnetic O-ion.

At any finite doping one has to consider at least also
the charge degrees of freedom on the copper sites and
would then be left with the usual one-band Hubbard or
t−J model to describe the interplay between magnetic
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Fig. 1. Experimental phase diagram for high-Tc compounds
(taken from [1]).

exchange and itinerancy. However, this scenario com-
pletely neglects the existence of the oxygen sites. That
they are indeed important, at least for the magnetic prop-
erties, can be seen from the following qualitative argu-
ment: due to the strong local correlations at the Cu-sites,
additional doped holes mainly occupy O-sites. The spin of
the hole at the O-site induces an effective ferromagnetic
interaction [4] between the neighbouring Cu-spins, so that
the antiferromagnetic ordering is strongly suppressed with
increasing hole-doping. In the case of electron doping,
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on the other hand, the additional particle has to go to
the copper sites due to Pauli’s principle, which effectively
means that free spins are removed from the system. This
obviously also leads to a suppression of magnetic order,
but in a weaker fashion. Thus, in order to obtain a more
realistic description of the physics of high-Tc compounds
one has to take into account also the oxygen degrees of
freedom and therefore one-band models like the standard
Hubbard or t−J model become inadequate.

The simplest model which includes both the effect of
strong correlations and the influence of the oxygen sites, is
the three-band Hubbard model or Emery model [5]. The
three-band Hubbard Hamiltonian reads

H =
∑
i,σ

εdd
†
iσdiσ +

∑
j,σ

εpp
†
jσpjσ

+
∑
〈ij〉,σ

tij

(
d†iσpjσ + h.c.

)
+
∑
i

Ud n
d
i↑n

d
i↓, (1)

where the vacuum is defined as all orbitals in (1) filled with

electrons. With this convention d†iσ(p†jσ) creates a hole in a

Cu 3dx2−y2-(O 2px/y)-orbital at site i(j) with spin σ and
εd(εp) are the corresponding on-site energies. tij = ±t
denotes the nearest-neighbour hopping matrix-element
between Cu- and O-sites and Ud stands for the Coulomb-
interaction of two holes, residing at the same Cu-site i
with number operators ndiσ.

In this paper we want to study magnetic properties of
the Hamiltonian (1) in the framework of the DMFT. In
this theory the dynamical renormalizations of the one par-
ticle properties become purely local [6,7], so that they can
be obtained from an effective impurity problem coupled to
a self-consistent medium. Due to the additional orbital de-
gree of freedom in (1) the mapping on the corresponding
effective impurity model is not unique. In order to treat
local spin and charge fluctuations between the Cu-site and
the surrounding O-sites better than on a mean-field level
we use the approach, developed in reference [8], where a
cluster of one Cu d-orbital and a normalized bonding com-
bination of the four surrounding O-orbitals is coupled to
the effective medium. This method indeed leads to the
anticipated physics on the one-particle level, namely the
formation of a low-lying singlet state – the Zhang-Rice
singlet [3] – and at half filling to a charge-transfer in-
sulator [8–10] in contrast to the Mott-Hubbard scenario
for the one-band model. So far, however, only the para-
magnetic state has been studied in reference [8]. In refer-
ence [11] the metal-insulator (MI) transition was studied
with Quantum Monte-Carlo in the context of the DMFT.
There the model was also embedded on a bipartite lattice
in order to take into account the antiferromagnetic sym-
metry breaking, but in this article the attention was called
to the MI-transition.

In order to obtain the phase diagram or look at the
behaviour in the antiferromagnetically ordered state the
method has to be extended to allow for the calculation of
susceptibilities or solve the DMFT equations for lattices
with AB-like structure, respectively. A short review of this
generalization together with the technique of calculating

the magnetic susceptibility will be given in the next sec-
tion, followed by the discussion of our results in Section 3.
The paper will conclude with a summary and outlook in
Section 4.

2 Method

2.1 The DMFT for the three-band model

Let us begin by summarizing the basic concepts intro-
duced in [8] for the three-band Hubbard model. In order
to construct the DMFT for a Cu–O plaquette, it is con-
venient to introduce the Fourier transform of the kinetic
part of the Hamiltonian (1) after generalization to d di-
mensions, which then reads [8]

H =
∑
k,σ

hσ(k) +
∑
i

Ud n
d
i↑n

d
i↓ +Hnon−bond, (2)

with

hσ(k) = εdd
†
kσdkσ + εpp

†
kσpkσ

+
√

2dtγk

(
d†kσpkσ+h.c.

)
. (3)

Here, dkσ is the Fourier transform of diσ and pkσ is the
orthonormalized Fourier transform of the hybridizing
combination of the oxygen orbitals surrounding a given
copper site [3,8]. The d−1 linear combinations, which are
orthogonal to pkσ were collected into Hnon−bond and will
be dropped in the following, because they are decoupled
from the remainder of the system. Finally, γk is given by

γ2
k = 1 − 1

d

d∑
ν=1

cos kν . In reference [8] it was shown, that

the rescaling
√

2dtγk → 2t∗γ∗k (4)

with γ∗k =
√

1− εk/
√

2d, t∗ = const. ≡ 1 and εk =∑d
ν=1 cos kν leads to a nontrivial limit for d → ∞. The

d-Green’s function in the DMFT now takes the form

Gdkσ(z) =

z − εd −Σd
σ(z)−

4t∗
2

− 4t∗
2

√
2d
εk

z − εp

−1

. (5)

The new ansatz by Schmalian et al. was to write the local
d-Green’s function to be of the form [8]

Gdσ(z)=
1

N

∑
k

Gdkσ(z)

!
=
[
z − εd −Σ

d
σ(z)−

4t∗
2

z − εp −∆σ(z)

]−1

.

(6)

In the DMFT the effective Cu–O cluster lives in a so-called
effective medium, defined via

Gσ(z)−1 = Gdσ(z)−1 +Σd
σ(z) = z − εd −

4t∗2

z − εp −∆σ(z)
·

(7)
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Note that in this form the coupling to the rest of the
system, which is described by ∆σ(z) happens through
the p-states only. This representation of the local Green’s
function is obviously not unique. One could also choose
a representation for the local d-Green’s function of the

form Gdσ(z) =
[
z − εd − Σd

σ(z) − ∆σ(z)
]−1

where the

resonance at z = εp is included in ∆σ(z). But from a
numerical point of view the form (6) is more convenient
because the singularity at z = εp is not included in the
hybridization function which therefore becomes smooth as
a function of frequency. The form (6) of the local Green’s
function is just the Dyson equation of an effective impu-
rity problem consisting of one d- and one p-orbital, where
only the p-orbital hybridizes with the conduction electrons
(see Eq. (13) in Ref. [8]).

2.2 DMFT for the Néel state

In the antiferromagnetic phase the period of the unit cell
of the lattice is doubled due to the reduced translational
symmetry. Consequently, the volume of the magnetic
Brillouin zone (MBZ) is reduced to one-half of the volume
in the paramagnetic state and the vector Q = (π, π, π, · · · )
becomes a reciprocal lattice vector. These changes in the
symmetries of the system can be simply taken into account
by introduction of an AB-sublattice structure [12] and re-
formulating the theory on an enlarged unit cell contain-
ing exactly one A- and one B-site. Since this procedure
does not affect the local two-particle interaction in the
Hamiltonian (2) we will concentrate on the kinetic part
for the derivation of the resulting Hamilton matrix. We
first split the kinetic part of (2) in the following way:

H =
∑

k∈MBZ,σ

{hσ(k) + hσ(k + Q)} . (8)

Note that the k-sum runs over k-points in the reduced
Brillouin zone only! Rewriting (8) in terms of the linear
combinations

dA/Bkσ =
1
√

2
(dkσ ± dk+Qσ)

pA/Bkσ =
1
√

2
(pkσ ± pk+Qσ) ,

(9)

acting on the A- or B-sublattice, respectively, one obtains

H =
∑

k∈MBZ,σ

Ψ†kσHσ
(k)Ψkσ. (10)

For simplicity we introduced a spinor notation for

the operators Ψ†kσ = (d†Akσ p
†
Akσ d

†
Bkσ p

†
Bkσ) and the

Hamilton matrix on the sublattices

H
σ
(k) =


εd +Σσ

A Π+
k 0 Π−k

Π+
k εp Π−k 0

0 Π−k εd +Σσ
B Π+

k

Π−k 0 Π+
k εp

 . (11)

The quantities Σσ
A/B denote the local self-energies due

to the two particle term in (2) on A/B-sublattice sites,
which are different in the antiferromagnetic state. Fur-

thermore Π±k = 2t∗√
2

(
γ∗k ± γ

∗
k+Q

)
. For the d-components

of the Green’s function matrix we finally obtain

Gσ
d
(k, z) = Ckσ

 ξσB −4t∗
2

εk√
2dξp

−4t∗
2

εk√
2dξp

ξσA

 (12)

with Ckσ =

ξσAξσB −
(

4t∗
2

εk√
2dξp

)2
−1

, ξp = z+µ− εp and

ξσA/B = z + µ − εd − Σσ
A/B − 4t∗

2

/ξp. The local Green’s

function is obtained by taking one of the diagonal elements
and summing over k with the result

Gσd,A/B(z) =

∞∫
−∞

dε ρo(ε)
ξσB/A

ξσAξ
σ
B −

(
4t∗

2

ε
ξp

)2 , (13)

where the density of states ρo(ε) corresponding to the
dispersion εk was introduced. In the paramagnetic state,
where ξσA = ξσB, one immediately recovers the result of
Section 2.1.

In the antiferromagnetic state it is sufficient to perform
the calculations for the A-sublattice only due to the addi-
tional symmetry [12] Gσd,A = Gσ̄d,B and use the spin-index
for book-keeping. The actual calculation is now a straight-
forward extension of the method used in reference [8] for
the paramagnetic phase. The local nature of the selfen-
ergies allows the mapping of the lattice problem on an
effective impurity-problem, consisting of a d-orbital and
the orthonormalized hybridizing combination of the four
surrounding p-orbitals, coupled to the effective medium,
which is described by the propagator (7) and has to be
determined selfconsistently. Again, the coupling to the
surrounding clusters is assumed to happen through the
p-states only.

The remaining local problem is solved with the resol-
vent method [13,14] and an extended version of the so
called Non Crossing Approximation (NCA) [14], where the
16 local eigenstates of the impurity are coupled through
the hybridization-function ∆σ(z) [8].

2.3 On the calculation of the magnetic susceptibility

On the one-particle level one can obtain magnetic proper-
ties by applying a staggered magnetic field and calculat-
ing the sublattice magnetization. This technique is very
tedious so that we used another method for calculating
the magnetic phase diagram.

In addition to the one-particle properties the DMFT
also allows to calculate two-particle correlation functions,
e.g. the magnetic susceptibility consistently. In analogy to
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the one-particle case the two-particle self energy becomes
purely local in the limit d→∞ [12,15]. This enables us to
extract the two-particle self-energy from the effective local
problem [15–17] and use it to determine the two-particle
correlation function for the lattice. Since the local two-
particle propagator is a function of three frequencies in the
most general case the algorithm works best for Matsubara
frequencies, because all quantities can be represented as
matrices in this case. For details of the method see e.g.
reference [17].

The choice of the cluster as effective impurity and the
finite value of Ud results in 16 local eigenstates. This leads
to a huge number of diagrams for the local two-particle
propagator, which have to be calculated as functions of
three frequencies and summed up numerically. Although
the problem of generating the correct diagrams for the
local two-particle propagator can be automated and han-
dled by the computer, the remaining numerical task is still
formidable and restrict our calculations to the evaluation
of the static susceptibility for the time being. Nevertheless,
the study of the dynamical susceptibility is in principle
also possible [18] and will be the subject of a forthcoming
publication.

3 Results

3.1 Susceptibility and phase diagram

Let us start the discussion of our results with the mag-
netic susceptibility. We calculated the static magnetic sus-
ceptibility of the Cu-spins in the paramagnetic phase at
the points q = 0 and q = Q, which give the homoge-
neous and staggered susceptibilities, respectively. For the
parameters of the three-band Hubbard model we have cho-
sen Ud = 2∆ = 7t∗, where the charge transfer gap ∆ is
defined by ∆ = εp − εd. Figure 2a shows typical results
for these two susceptibilities as a function of tempera-
ture T for a hole-doping δ = nd + np − 1 = 0.1. For the
above choice of Ud and ∆ we observe a finite and slowly
varying ferromagnetic susceptibility χdF (T, δ), which does
not show any tendency towards an instability in the cal-
culated region of temperatures and dopings. The antifer-
romagnetic susceptibility χdAF (T, δ), on the other hand,
varies strongly as a function of temperature and diverges
at a finite temperature T = TN . Figure 2b shows the
inverse staggered susceptibility for the same parameters.
As expected we find the linear variation of χ−1

AF , which
is typical for a mean-field theory. By calculating the in-
verse susceptibility for different dopings δ we obtain the
δ−T -phase-diagram, shown in Figure 3. Note, that half-
filling (δ = 0) does not coincide with the MI-transition.
This is so because for the used parameter values of Ud and
∆ the metal-insulator-transition is shifted towards larger
hole-filling values n > 1. Obviously the highest value for
the Neél temperature is achieved at the metal-insulator-
transition and not at half-filling. As already observed for
the one band model [16,17] the antiferromagnetic phase is
strongly suppressed upon doping. However, in contrast to
the former case one recognizes a pronounced asymmetry
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Fig. 2. Homogeneous (χdF ) and staggered (χdAF ) susceptibili-
ties (a) and inverse staggered susceptibility (b) for 10% hole-
doping and parameters as given in the text.
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Fig. 3. Magnetic phase-diagram for the 3-band Hubbard
model on a hypercubic lattice for Ud = 2∆ = 7t∗.

in the Neél temperature with respect to hole- and electron-
doping. This stronger sensitivity of the antiferromagnetic
ordered state in the case of hole doping compared to elec-
tron doping is qualitatively in good agreement with ex-
periments (see Fig. 1) and is a direct consequence of the
oxygen degrees of freedom. The present large D treatment
however neglects short range order phenomena so that the
argumentation of reference [4] concerning the frustration
of the AF-order by hole doping does not hold on this level.
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Fig. 4. d-spectral function for the majority (full curves) and
minority spin (dashed curves) for Ud = 2∆ = 7t∗, fixed doping
δ = 0.015 (below the MI-transition (cf. Fig. 3)) for various
temperatures β = 18/t∗ (a), β = 20/t∗ (b) and β = 22/t∗ (c)
and for δ = 0.063 (above the MI-transition) and β = 22/t∗ (d).

But nevertheless the oxygen degrees of freedom cause a
particle hole asymmetry in the half filled three band model
which yields the calculated asymmetry in the phase dia-
gram in this large D approach.

In our calculations the ordered phase is stable up to
δ ≈ 0.18 for low enough temperatures (cf. Fig. 3). Ex-
periments and other theoretical calculations show much
stronger suppression of the antiferromagnetic ordering
with doping [1]. The tendency to overestimate the mag-
netic phase boundary is typical for mean field theories,
since they completely neglect fluctuations, which strongly
renormalize transition temperatures.

3.2 Spectral functions in the ordered phase

With the generalized equation (13) it is also possible to
perform calculations in the antiferromagnetic phase. To
allow for solutions with finite sublattice magnetization

md =
∣∣∣〈nA/Bd↑ − n

A/B
d↓

〉∣∣∣ we apply a small symmetry-

breaking staggered magnetic field h(ri) = heiQ·ri in
z-direction at the beginning of our iteration procedure,
which is turned off after a few iterations.

In the following we concentrate on the d-part of
the spectrum Aσd (ω) = −(1/π)ImGσd,A(ω + iδ) on the
A-sublattice, since the p-part shows exactly the same fea-
tures as the d-part, only with different spectral weights

for the various bands. Figures 4a to 4c show the typical
behaviour as the temperature T is lowered for fixed val-
ues of the parameters Ud = 2∆ = 7t∗ at finite doping
δ = 0.015.

For β = 18/t∗ the system is in the paramagnetic state
(cf. Fig. 4a), where the general equation (13) reduces to
the form (6). We find the same result for the d-part of the
spectrum as in reference [8], where a detailed discussion
of the various bands concerning their doping dependence,
transfer of spectral weight and the evolution of coherent
quasiparticles near the Fermi-energy can be found. Let
us just briefly mention the important low energy parts,
namely the so-called lower Hubbard band at ω < 0 in the
spectrum of Figure 4, which has mainly d-character, and
the Zhang-Rice band right above the gap, which is gener-
ated by the singlet combination of the p-and d-states on
one plaquette [8]. Note that δ > 0 although the chemical
potential is located in the lower Hubbard band. There-
fore the MI-transition occurs at larger filling values as
already mentioned in Section 3.1. With decreasing tem-
perature the system enters the antiferromagnetic phase
and the spectral functions of up and down spin become
inequivalent (cf. Fig. 4b), yielding a finite sublattice mag-
netization md. Note that the major effect is a transfer
of spectral weight from the minority spin to the major-
ity spin. In addition the peaks in the spectra are slightly
shifted in energy with respect to each other. This effect can
be ascribed to an internal molecular field, generated by the
finite sublattice magnetization. Therefore, measuring the
energy shift one can calculate the internal molecular field
and from this the exchange parameter J of a correspond-
ing t−J-model. For still lower temperatures the sublattice
magnetization increases and above a value of md ≈ 0.5 a
pronounced multipeak structure is evolving (see Fig. 4c).
Figure 4d shows the spectral function for the same system
parameters and sublattice magnetization as in Figure 4c
but with the chemical potential right above the gap. Also
in this regime the same multipeak structure occurs and
the spectral function shows little difference to Figure 4c.
Only the peaks next to the chemical potential have more
spectral weight compared with Figure 4c.

These regular resonances were previously found in
DMFT calculations of the t−J-model [19]. There the mul-
tiple peaks could be related to bound states of one sin-
gle hole in the Neél background. In reference [20] it was
shown, that this special problem can be solved exactly for
d = ∞ and T = 0 within the t−J-model. The most im-
portant physical aspect is, that the moving hole feels a
binding potential proportional to J , growing linearly with
the distance from its starting point due to the breaking of
antiferromagnetic bonds during its motion [20,19]. This
linear potential leads to a sequence of discrete poles at
frequencies [20]

ωn = −2t̂−
J∗

2
− ant̂

(
J∗

2t̂

)2
3

(14)

as spectrum for the one particle excitations. Here, the an
denote the zeros of the Airy function Ai

(
4t̂/J∗

)
, and the
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Fig. 5. Comparison of the low energy part of the d-spectrum
with the exact results (vertical lines), given by equation (14).

renormalized parameters t̂ and J∗ are given by t̂ = t
√

2d,
J∗ = J2d. These exact results can be compared directly
to the resonances, found in the DMFT calculations for the
t−J-model [19]. Since the model used in our calculations
is fundamentally different from the t−J-model and also
from the one-band Hubbard model, the relevance of this
physically intuitive picture to it and especially the proper
choice of the parameters for an effective t−J-model to
describe the low energy properties is not clear a priori.
The approach chosen here is to fix the hopping to t2/∆,
which reproduces the free bandwidth. In our case we de-
termine an effective exchange interaction J∗ from the en-
ergy shift ∆E = J∗md of the bands. Note that this is just
the energy shift of the spin-up and spin-down bands of
a corresponding t−J-model, treated on a mean-field level
[7,19,21]. Another possibility to obtain the exchange inte-
gral J is to use the result of a Schrieffer-Wolf transforma-
tion of the 3-band Hubbard model, see e.g. [9]. However
this transformation holds only for large values of Ud and
∆, so that we do not expect this procedure to give a mean-
ingful result for our parameter values.

Fixing the parameters in equation (14) as discussed
above, we can indeed directly compare our results with
the discrete spectrum (14). Figure 5 shows some examples
for the fit of the low energy part of the d-spectrum Aσd (ω)
by the discrete spectrum (14) at fixed doping δ = 0.015
and sublattice magnetization md = 0.60 for various pa-
rameters Ud = 2∆. Note, that the energy scales of up-
and down-spin in Figure 5 are already shifted by ±∆E/2
respectively, so that the resonances of majority- and
minority-spin bands coincide. We find quite good agree-
ment with the distance of the peak positions. The broad-
ening is expected to result from finite temperature, sub-
lattice magnetization and doping effects [19]. This means
that the t−J-model with proper choice of the parameters
t and J seems to reproduce the low energy one-particle
dynamics of the three-band Hubbard model in d = ∞
correctly, even in the antiferromagnetic state. In addition,
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Fig. 6. d-spectral function for the majority (full curves) and
minority spin (dashed curves) for Ud = 2∆ = 7t∗ and β =
50/t∗ at δ = −0.08 (a) and δ = 0.13 (b).

the basic physical picture for the multipeak structures
observed for low temperatures appears to be the same as
in the simple one-band models.

In order to gain more insight in the effect of doping on
these multipeak structure we investigated the spectrum at
larger doping far away from the MI-transition. Figure 6
shows the results for the d-part of the spectrum for the
same system parameters and sublattice magnetization as
in Figures 4c and 4d at β = 50/t∗ but at larger doping
δ = −0.08 (a) and δ = 0.13 (b).

In the electron (Fig. 6a) as well as in the hole doped
regime (Fig. 6b) only the resonances next to the chemi-
cal potential survive. Due to the larger doping there are
more electrons/holes in the system whose paths can inter-
sect and restore the antiferromagnetic background. There-
fore the electrons/holes become more mobile and the res-
onances at higher energies are washed out.

In finite dimensions the string picture for one hole in
the antiferromagnetic background no longer holds and is
correct only up to order 1/d2 [20] due to the possibility of
paths which intersect and touch themselves [22]. Second,
fluctuations become more important which can restore the
antiferromagnetic background. Thus in low dimensions we
expect that the multipeak structure at finite doping will
disappear.

4 Summary

In this paper we presented results for the magnetic proper-
ties of the three-band Hubbard model in the limit of high
spatial dimensions. These were obtained in the framework
of the Dynamical Mean Field Theory, which enabled us
to calculate the one particle spectrum as well as two par-
ticle correlation functions, namely the magnetic suscep-
tibility. From this we evaluated the δ−T -phase diagram,
which shows strong suppression of the antiferromagnetic
state upon doping. In contrast to one-band models the
ordered state is found to be more sensitive upon doping
in the case of hole doping in comparison to electron dop-
ing. This asymmetric behaviour is qualitatively in good
agreement with experiments. The spectral function for
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single particle excitations in the antiferromagnetic phase
shows pronounced features above a sublattice magneti-
zation md ≈ 0.5. These structures are similar to those
found in the t−J-model for the special case of one single
hole, moving in the Neél background and can be under-
stood by the binding of one hole in a string potential. A
quantitive fit of the spectral functions by the exact results
for the special case for the t−J-model shows quite good
agreement, so that the t−J-model seems to reproduce the
correct physics of the three-band Hubbard model as long
as one is only interested in the low energy one-particle
physics.

In low dimensions fluctuations become more important
which will destroy the multiple peaks found in the spectral
function for d = ∞. Thus these peaks have not yet been
observed in experiments.
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